Existence and U-H Stability Results for Nonlinear Coupled Fractional Differential Equations with Boundary Conditions Involving Riemann–Liouville and Erdélyi–Kober Integrals

نویسندگان

چکیده

The purpose of this article is to discuss the existence, uniqueness, and Ulam–Hyers stability solutions a coupled system fractional differential equations with Erdélyi–Kober Riemann–Liouville integral boundary conditions. Banach fixed point theorem used prove uniqueness solutions, while Leray–Schauder alternative existence solutions. Furthermore, we conclude that solution discussed problem Hyers–Ulam stable. results are illustrated examples.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence results for a coupled system of nonlinear fractional differential equations with multi-point boundary conditions

In this paper, we study a coupled system of nonlinear fractional differential equations with multi-point boundary condi- tions. The differential operator is taken in the Riemann-Liouville sense. Applying the Schauder fixed-point theorem and the contrac- tion mapping principle, two existence results are obtained for the following system D^{alpha}_{0+}x(t)=fleft(t,y(t),D^{p}_{0+}y(t)right), t in (0,...

متن کامل

Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions

This paper studies a coupled system of nonlinear fractional differential equation with three-point boundary conditions. Applying the Schauder fixed point theorem, an existence result is proved for the following system Du (t) = f (t, v (t) , Dv (t)) , t ∈ (0, 1) , Dv (t) = g (t, u (t) , Du (t)) , t ∈ (0, 1) , u (0) = 0, Du (1) = δDu (η) , v (0) = 0, Dv (1) = δDv (η) , where α, β, m, n, η, δ, θ s...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

the existence results for a coupled system of nonlinear fractional differential equations with multi-point boundary conditions

in this paper, we study a coupled system of nonlinear fractional differential equations with multi-point boundary condi- tions. the differential operator is taken in the riemann-liouville sense. applying the schauder fixed-point theorem and the contrac- tion mapping principle, two existence results are obtained for the following system d^{alpha}_{0+}x(t)=fleft(t,y(t),d^{p}_{0+}y(t)right), t in (0,...

متن کامل

Positive Solutions for Nonlinear Fractional Differential Equations with Boundary Conditions Involving Riemann-Stieltjes Integrals

and Applied Analysis 3 Inspired by the work of the above papers, the aim of this paper is to establish the existence and multiplicity of positive solutions of the BVP 1.1 . We discuss the boundary value problemwith the Riemann-Stieltjes integral boundary conditions, that is, the BVP 1.1 , which includes fractional order two-point, three-point, multipoint, and nonlocal boundary value problems as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractal and fractional

سال: 2022

ISSN: ['2504-3110']

DOI: https://doi.org/10.3390/fractalfract6050266